Staged, High Pressure Oxy-Combustion Technology: Development and Scale-Up

DE-FE0009702

NETL CO2 Capture Technology Meeting Aug 12, 2016

Principal Investigator: Richard Axelbaum

> Presented By: Ben Kumfer

Project Overview

Project Objectives: Phase II

Design and build a laboratory-scale facility and conduct laboratoryscale experiments and complimentary modeling that address the technical gaps and uncertainties addressed in Phase I. Advance SPOC technology to TRL-5.

Funding

Total project (Phases I & II): \$5,243,789

DOE share: \$4,137,184 Cost share: \$1,106,614

Project Performance Dates

10/01/2012 - 09/30/2016

Project Participants

Washington University – Lead: SPOC development, experiments EPRI – Technology evaluation, end-user insight, corrosion ORNL – Corrosion study

Technology Background

Pressurized Oxy-Combustion

- The requirement of high pressure CO₂ for sequestration enables pressurized combustion as a tool to increase efficiency and reduce costs.
- Benefits of Pressurized Combustion
 - Recover latent heat in flue gas
 - Latent heat recovery can be combine with integrated pollution removal
 - Reduce gas volume
 - Avoid air-ingress
 - Higher partial pressure of O₂
 - Optically dense atmosphere

Motivation for SPOC

Key Features:

Improve capital costs by:

- Optimizing use of radiation to minimizing heat transfer surface area
- Minimizing recycled flue gas (RFG) and, thus, gas volume
- Minimizing equipment size
- Utilizing modular boiler construction

Improve operating costs by:

- Maximizing boiler efficiency
- Minimizing parasitic loads associated with RFG
- Utilizing "lead chamber" process for SOx & NOx removal
- Minimizing oxygen requirements
- Maximizing efficiency through dry feed
- Increasing performance of wet, low BTU fuels

Schematic Process Diagram for SPOC

Plant Efficiencies

a) supercritical steam conditions, net power output = 550 MW (Phase I)

	Air-fired	Atmos. P oxy-combustion	SPOC	
Coal type	Illinois #6	Illinois #6	Illinois #6	PRB
Net generating efficiency, HHV (%)	39.3	29.3	36.7	35.7

b) independent study comparing two pressurized oxy-combustion processes

	Air-fired	Atmos. P oxy-combustion		Pressurized oxy-combustion	
		(conservative)	(optimized)	ISOTHERM	SPOC
Net generating efficiency, LHV (%)	46.1	36.1	39.1	38.4	42.3

6%-pts improvement in plant efficiency

a. Gopan, A. et al. (2014) Applied Energy, 125, 179-188.

b. Hagi, H., et al. (2014). Energy Procedia, 63, 431-439.

Technical Approach/Project Scope

Work Plan

Tasks

- 1. Project management
- 2. Design, fabrication and installation of high pressure combustion furnace
- 3. High pressure combustion experiments (heat flux, temp, ash, deposition)
- 4. Materials corrosion studies (high O₂ and SO₂ environments)
- 5. Modeling direct contact cooler
- 6. Re-evaluation of boiler design
- 7. Update process model and techno-economic analysis

Projected Phase 2 Outcomes

- Proof of concept demo of coal combustion under SPOC conditions.
- Improved understanding of radiation heat transfer in pressurized oxy-combustion conditions
- Improved understanding of ash formation/deposition mechanism in pressurized oxy-combustion conditions
- Knowledge of performance of boiler tube materials under SPOC conditions
- Improved estimate of SOx, NOx removal efficiency in direct contact cooler

• Reduced uncertainty and contingencies → improved COE ₩ashingtonUniversity in St.Louis

Progress and Current Status:

ANSYS FLUENT CFD

Furnace Design

- Diameter is fixed *heat transfer requirements*.
- Cylindrical vessel *buoyancy effects significant*.
- Reducing inlet size of reactor *increased axial velocity*.
- Conical design high initial velocity w/o compromising on overall heat transfer surface area.

$$Ri_{x} = g\beta(T_{hot} - T_{surr})\frac{x}{v^{2}}$$

• At full scale – *Cone only forms a small part of the overall vessel.*

Design of Conical Zone

Velocity contour

- Q_{gas} increases due to 1) increase in *T* and 2) gas generation via $C(s) \rightarrow CO_2(g)$
- The reactor is designed to achieve a nearly flat average gas velocity in the flame zone maintain a high Richardson Number.

Particle Deposition in Conventional and SPOC Boilers

 $\overline{u_n} > 0$

- Ash particles deposit on wall due to inertial impaction
- Washington University in St.Louis

- Ash particles deposit on wall due to eddy diffusion
- Lower ash deposition rate
- Particles have more time to cool before hitting the wall

SPOC particle deposition

CFD simulation results

- The average particle impact rate in the SPOC boiler is an order of magnitude lower than that in conventional PC boilers¹
- The temperatures of all ash deposits are lower than 850 °C, which is much lower than the ash fusion temperature. Slagging is unlikely.

¹ Wang, H., & Harb, J. N. (1997) Progress in Energy and Combustion Science, 23(3), 267-282.

Effect of Scale on Wall Heat Flux

- Scale-up from 500 MWe to 1000 MWe
- Stage 1 results

Radiation and Particle Cloud Interactions

Optically thin medium

Optically thick medium Optically dense medium

Radiant Heat Transfer

Fundamental study on radiation

Test Facility Status

<u>Year 1:</u>

- Test facility engineering design
- Received & inspected the pressure vessel
- Start of lab renovation

<u>Year 2:</u>

- Repaired, certified pressure vessel
- Vessel and supporting steel structure installed
- Piping, electrical for ancillary
- Design and fabrication of vessel interior parts Year 3:
- CO₂ and O₂ bulk storage tanks
- Controls & data acquisition
- Coal feed system installation
- Commissioning

Test Facility – Block Flow Diagram

Pressurized Oxy-Combustion Facility

- ~100kW thermal input
- 1-15 bar
- Completing commissioning

Progress and Current Status: Corrosion Tests

Effect of Pressure on Fire-side Corrosion: Experiment Summary

- Gas only, 500-h screening experiments
 - o 600°C: Conventional supercritical, Fe-base alloys + overlays
 - o 800°C: A-USC, Ni-base alloys
 - 1 and 17 bar
 - $90\%O_2$ -10%H₂O with and without 0.1%SO₂
 - 4 sets of specimens at each temperature
- Effect of pressure on coal ash corrosion at 700°C
 - 700°C selected as the typical temperature for peak fireside corrosion
 - Specimens exposed bare and with synthetic ash reapplied after each cycle
 - Oxy-fired gas 1: (63.4%CO₂-5%N₂-1.5%O₂-30%H₂O-0.1%SO₂)
 - Four 100-h cycles
 - Oxy-fired gas 2: (63%CO₂-5%N₂-1.5%O₂-30%H₂O-0.5%SO₂)
 - 100-h, system plugged due to corrosion product (issue resolved)

Corrosion Tests with and without Ash 700°C: $63.4\%CO_2-5\%N_2-1.5\%O_2-30\%H_2O-0.1\%SO_2$

• Only minor effects of pressure observed

Effect of Increased Sulfur 700°C 63.4%CO₂-5%N₂-1.5%O₂-30%H₂O-0.5%SO₂

- 100 h only
- Similar results to 0.1% SO₂
- No clear effect of pressure

Conclusions: Corrosion Tests

- 1) $90\%O_2$ -10%H₂O environment at 1 and 17 bar showed reaction rates similar to prior work in steam and air+H₂O at 600° and 800°C
 - No detrimental effect of high O₂ environment was observed
- 2) Without ash, SO₂ addition was detrimental, especially at 17 bar
 - Higher SO₂ and SO₃ partial pressure at 17 bar
- 3) When synthetic coal ash was added at 700°C, no particular effect of pressure was observed.
 - With ash, mechanism is expected to change to coal ash corrosion, i.e. molten salt attack
 - Pressure has little effect on condensed salt phase on alloy surface
- 4) Higher alloyed steels (e.g. 310HCbN) and/or Ni-base alloys or overlay coatings on steels appear to be possible solutions for a high S coal SPOC environment.

Project Status

- Year 3:
 - Pressurized combustion experiments
 - CFD model evaluation
 - Detailed boiler tube materials corrosion analysis
 - Process model and techno-economic analysis reevaluation
- After this project:
 - Advance technology to Pre-FEED for pilot scale facility.
 - o U.S.-China Clean Energy Research Center (CERC-ACTC)
- Scale-up:
 - Results of our study will be used to attract potential industrial partners for pilot-scale demonstration

Development Roadmap

Washington University in St.Louis

Acknowledgements

- Wash U: B. Dhungel, A. Gopan, F. Xia, M. Holtmeyer, B. Kumfer, Z. Yang, A. Adeoson, D. Khatri, T. Li
- EPRI: J. Phillips, D. Thimsen, S. Kung, J. Shingledecker
- ORNL: B. Pint

Funding:
U.S. Department of Energy: Award # DE-FE0009702
Advanced Conversion Technologies Task Force, Wyoming
Consortium for Clean Coal Utilization, Washington University in St. Louis Sponsors: Arch Coal, Peabody Energy, Ameren

U.S. Government Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.